Final Examination (Dynamics of Machine Systems) Upload deadline: 2021/6/23 24:00

1. Calculate the Mobility (DOF) of the 2-D or 3-D mechanical system (10%) (a) (b) (c)

2. In the offset slider crank mechanism shown in Fig. 1 below the constrained path of the pin on the slider does not extend through the center of rotation of the crank. Given the lengths L_1 , L_2 and L_3 and the crank angle θ_2 , the position of the slider L_4 and the interior joint angles θ_3 and γ could be determined by the equations of $f(L_1, L_2, L_3, \theta_2)$. Please derive these equations. (10%)

Fig. 1

3. As shown in Fig. 2, the pendulum(AB) has the initial angle 30° with respect to horizontal positive x-axis. If the pendulum has mass m=2kg, length l=0.45m, gravity $g=9.8m/s^2$ and release from an initial angular velocity 3 rad/s(CCW). Please solve for the angular acceleration and reaction force of revolute joint A at the release instant. (10%)

Fig. 2

4. The 4-Bar-Linkage as shown in Fig. 3, Link#2 rotates with constant angular velocity $\omega_2 = 1$ rad/s(CCW). If O₂O₄=20mm, O₂A=20mm, O₄B=40mm. Link#2(O₂A) and Link#4(O₄B) are perpendicular to the horizontal axis. Please use complex analysis method to solve for Link#3(AB) and Link#4(O₄B) angular velocities ω_3 and ω_4 , also the angular accelerations α_3 and $\alpha_4 \circ (10\%)$

Fig. 3

5. As shown in Fig. 4, a single degree of freedom mass-spring system consists of a m=5kg mass suspended by a linear spring which has a stiffness coefficient of k=500N/m. The mass is given an initial displacement of 0.5m and released from the initial velocity condition $v_0=10$ m/s. Determine the system (a)Differential equation of motion, (b)Circular Natural Frequency, Natural Frequency and Period, (c)Dynamic response. (10%)

6. As shown in Fig. 5, a single degree of freedom mass-spring system consists of a m=10kg mass suspended by a linear spring which has a stiffness coefficient of k=250N/m. The system is subjected to a harmonic forcing function which has the amplitude 10N and frequency 5rad/s (F(t)=10sin(5*t)). The mass is given an initial displacement of 1m and released from the rest condition. Determine the system (a)Differential equation of motion, (b)Circular Natural Frequency and Period, (c)Dynamic response. (10%)

- A 3mm module, 20^o pinion of 18 teeth drives a gear of 45 teeth. The pinion rotates with an angular velocity 9 rad/s(CCW). Calculate (A)Radius of pitch circle (B)Radius of base circle (C)Dedendum (D)Addendum (E)Diametral pitch (F)Center distance (G)The angular velocity of gear(magnitude and direction) (H)Contact Ratio. (10%)
- 8. A 0.3-module pinion of 34 teeth drives a gear with 60 teeth. If the center distance is increased by 0.127 mm, compare the backlash produced with pressure angles of 14.5°, 20°, and 25°. (10%)
- 9. A three-threaded worm drives a 35-tooth worm gear having a pitch diameter of 207.8 mm and a helix angle of 21.08°. If the shafts are at right angles, calculate the lead and the pitch diameter of the worm. (10%)
- 10. A planetary gear train for a two-speed aircraft supercharger drive is shown in Fig. 6. Gear 2 is driven by a 63-tooth gear (not shown) which operates at 2400 rpm. At high speed, gear 2 connects to the supercharger shaft through additional gearing. At low speed, gear 7 is held stationary and shaft B is connected to supercharger shaft with the same gear ratio as was used between gear 2 and the supercharger shaft. If the supercharger operates 24000 rpm at high speed, calculate the low speed value. (10%)

11. In the planetary reduction unit shown in Fig. 7, gear 2 turns at 300 rpm in the direction indicated. Determine the speed and direction of rotation of gear 5. (10%)

- 1. Please submit the solution of final examination as soon as possible.
- 2. Please upload your document file(*.docx) and insert hand-writing file (please scan to the image file save as JPG file) to the following website.

Host Name: 140.130.17.62 User ID: msd Password: msd

Please go to directory \Final-Examination, you can use your student ID to create a subdirectory. Finally, you should upload your files to your student ID subdirectory.